MATH 245 F17, Exam 3 Solutions

1. Carefully define the following terms: recurrence, $\Omega, \Delta,=$ (for sets).

A recurrence is a sequence, such that all but finitely many terms are defined in terms of its previous terms. Given two sequences a_{n}, b_{n}, we say that $a_{n}=\Omega\left(b_{n}\right)$ to mean that there is some $n_{0} \in \mathbb{N}$ and there is some $M \in \mathbb{R}$ such that $\forall n \geq n_{0}, M\left|a_{n}\right| \geq\left|b_{n}\right|$. Given sets R, S, the set $R \Delta S=\{x:(x \in R \wedge x \notin S) \vee(x \notin R \wedge x \in S)\}$. Given sets R, S, we say that $R=S$ if they contain the exact same elements.
2. Carefully define the following terms: disjoint, equicardinal, Distributivity Theorem (for sets), De Morgan's Law Theorem (for sets).
Given sets R, S, we say they are disjoint if $R \cap S=\emptyset$. Given sets R, S, we say they are equicardinal if we can pair the elements of R with the elements of S. Given sets R, S, T, the Distributivity Theorem states $R \cap(S \cup T)=(R \cap S) \cup(R \cap T)$ and $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$. Given sets R, S, U with $R \subseteq U$ and $S \subseteq U$, De Morgan's Law states that $(R \cap S)^{c}=R^{c} \cup S^{c}$ and $(R \cup S)^{c}=R^{c} \cap S^{c}$.
3. Let $S=\{a, b\}$. Give a two-element subset of $2^{2^{S}}$.

We seek a set, both elements of which are elements of $2^{2^{S}}$. That is, we need a set, both elements of which are subsets of $2^{S}=\{\emptyset,\{a\},\{b\},\{a, b\}\}$. Many solutions are possible, such as $\{\{\emptyset,\{a\}\},\{\emptyset,\{b\}\}\}$, or $\{\emptyset,\{\emptyset\}\}$, or $\{\{\{a\}\},\{\{b\}\}\}$. Careful notation is critical here.
4. Suppose that a recurrence satisfies the relation $T_{n}=4 T_{n / 2}+n^{2}$. Determine what, if anything, the Master Theorem tells us.
We have $a=4, b=2$, and $d=\log _{2} 4=2$. Because $c_{n}=n^{2}=n^{d}$, in fact $c_{n}=\Theta\left(n^{d}\right)$. Hence, the "Middle c_{n} " part of the theorem applies, which tells us that $T_{n}=\Theta\left(n^{2} \log n\right)$.
5. Let R, S, T be sets, with $S \subseteq T$. Prove that $R \cap S \subseteq R \cap T$.

Let $x \in R \cap S$. Hence $x \in R \wedge x \in S$. By simplification, $x \in S$. Because $S \subseteq T$, in fact $x \in T$. By simplification on $x \in R \wedge x \in S$ the other way, $x \in R$. Applying conjunction to $x \in R$ and $x \in T$, we get $x \in R \wedge x \in T$. Hence $x \in R \cap T$.
6. Let R, S, U be sets, with $R \subseteq S \subseteq U$. Prove that $S^{c} \subseteq R^{c}$.

Let $x \in S^{c}$. Hence $x \in U \backslash S$ and thus $x \in U \wedge x \notin S$. By simplification twice, we get $x \in U$ and $x \notin S$. We now have two cases, depending on whether or not $x \in R$: If $x \in R$, then (since $R \subseteq S$), $x \in S$. But this is impossible, so this case can't happen. If instead $x \notin R$, then, by conjunction, $x \in U \wedge x \notin R$. Hence $x \in U \backslash R$ and so $x \in R^{c}$.
7. Prove or disprove: For all sets $R, S, R \times S=S \times R$.

The statement is false, and needs a counterexample to disprove. This will be specific sets R, S to falsify the equality. Many solutions are possible, such as $R=\{1\}, S=\{2,3\}$. Now $R \times S=\{(1,2),(1,3)\}$ while $S \times R=\{(2,1),(3,1)\}$. To falsify the equality we need a specific element of one set, that is not an element of the other. Note that $(1,2) \in R \times S$ but $(1,2) \notin S \times R$, so $R \times S \neq S \times R$.
8. Solve the recurrence given by $a_{0}=a_{1}=1, a_{n}=5 a_{n-1}-6 a_{n-2}(n \geq 2)$.

The characteristic polynomial is $r^{2}=5 r-6$, which rearranges as $0=r^{2}-5 r+6=(r-3)(r-2)$. Hence the general solution is $a_{n}=A 3^{n}+B 2^{n}$. We now use our initial conditions as $1=a_{0}=A 3^{0}+B 2^{0}=A+B$, and $1=a_{1}=A 3^{1}+B 2^{1}=3 A+2 B$. This has solution $A=-1, B=2$, so our solution is $a_{n}=-3^{n}+2 \cdot 2^{n}=2^{n+1}-3^{n}$.
9. Let $a_{n}=3 n^{2}+7$. Prove that $a_{n}=\Theta\left(n^{2}\right)$.

Part $1\left(n^{2}=O\left(a_{n}\right)\right)$: Take $n_{0}=M=1$, and let $n \geq n_{0}=1$. We have $\left|n^{2}\right|=n^{2} \leq 3 n^{2}+7=M\left|3 n^{2}+7\right|=$ $M\left|a_{n}\right|$.
Part $2\left(a_{n}=O\left(n^{2}\right)\right)$: Take $n_{0}=7, M=4$, and let $n \geq n_{0}=7$. We have $n^{2} \geq 7 n \geq 7$, so $\left|a_{n}\right|=\left|3 n^{2}+7\right|=$ $3 n^{2}+7 \leq 3 n^{2}+n^{2}=4 n^{2}=M\left|n^{2}\right|$.
10. Let R, S, T be sets. Prove that $R \times(S \cup T) \subseteq(R \times S) \cup(R \times T)$.

Let $x \in R \times(S \cup T)$. Then $x=(a, b)$ where $a \in R$ and $b \in S \cup T$. We have two cases. Case 1: $b \in S$. Then, $(a, b) \in R \times S$, so $x \in R \times S$. By addition, $x \in R \times S \vee x \in R \times T$, so $x \in(R \times S) \cup(R \times T)$. Case 2: $b \in T$. Then, $(a, b) \in R \times T$, so $x \in R \times T$. By addition, $x \in R \times S \vee x \in R \times T$, so $x \in(R \times S) \cup(R \times T)$. In either case, $x \in(R \times S) \cup(R \times T)$.

